

Populations of heterotrophic dinoflagellate Noctiluca scintillans in the Black Sea and the northern Adriatic Sea

Alexander S. Mikaelyan, Alenka Malej, Tamara A. Shiganova, Valentina Turk, Anastasia E. Sivkovitch, Eteri I. Musaeva, Tjaša Kogovšek, Taisia A. Lukasheva

MARES2020, Varna, 2013

Two forms of *Noctiluca scintillans*: the green form (upper) with the endosymbiont *Pedinomonas noctilucae* and the heterotrophic red form (lower)

Harrison et al., 2011

Relationship between dynamics of population of *N. scintillans* and various factors

Parameter	Region	Description	Relationship	Reference
	Japan Sea	Diatoms and chlorophyll a	Positive	Nakamura, 1998
	Southern Benguela	Total biomass	Positive	Painting et. al, 1993
	Red Sea	Diatoms and dinoflagellates species	Negative	Mohamed et. al, 2007
Phytoplankton	Northern Adriatic Sea	Total biomass	No	Umani et. al, 2004
	Southern-eastern Australian coast	Diatoms	Positive	Dela-Cruz et. al, 2002
	Gulf of Oman	Chlorophyll a No		Al-Azri et al., 2007
	South China Sea	Chlorophyll a	Negative	Huang and Y. Qi, 1997
Zooplankton	Northeast Atlantic	Mesozoplankton species	No	Hinder et al., 2012
	Northern Adriatic Sea	Net biomass	Negative	Umani et. al, 2004
	Sagami Bay, Japan	Biomass	No	Miyaguchi et. al, 2006
Temperature	North Sea	Winter SST	Positive	Heyen et al., 1998
	Red Sea	Sea surface	No	Mohamed et. al, 2007
	Black Sea, NWS	Winter SST	Negative	Oguz and Velikova, 2010
	Black Sea	Spring SST	Negative	Shiganova 2009

Relationship between dynamics of population of *N. scintillans* and various factors

Parameter	Region	Description	Relations hip	Reference
Meteo-	Sagami Bay, Japan	Wind direction and rainfall	Positive	Miyaguchi et. al, 2006
	Gulf of Oman	Wind intensity and direction	Positive	Al-Azri et al., 2007
River discharge	Port Blair Bay Indian Ocean	Terrigenous and allochthonous inputs	Positive	Dharani et. al, 2004
Nutrients	Red Sea	Ammonia	Positive	Mohamed et. al, 2007
		Phosphates, Nitrates, Silicates	Negative	
	Port Hacking near Sydney	Ammonia in surface layer	Positive	Dela-Cruz et. al, 2002
		Nitrate concentration in surface layer	Negative	

The idea of the current research is to apply a comparative analysis of Noctiluca populations in two quite similar environments and to reveal the common factors driving the populations in both regions

Sampling

Monitored site in the Northern Adriatic sea bottom 20 м bimonthly From 2004 to 2012 Monitored site in the Black Sea sea bottom 7 м (Pier) 2-3 times per month from 2002 to 2012

Open waters (>50m) from 1997 to 2012 (447 stations)

Cell size spectrum of *Noctiluca* in the Black and northern Adriatic Seas

Характеристики популяций Noctiluca в Адриатическом и Черном морях в период массового развития (май-июнь) и осенью (сентябрь-октябрь)

Period	Cells	Food vacuoles		Feeding cells
	Diameter (µm)	Number per cell	Diameter (µm)	% in samples
Adriatic Sea				
May	507±7.0 (280)	1.78±0.14 (192)	79±2.0 (341)	79±6.0 (19)
September- October	468±9.1 (106)	0.69±0.09 (106)	94±4.4 (73)	49±7.0 (11)
р	0.003	0.003	0.01	0.03
Black Sea				
1 May – 15 June	536±5.7 (280)	1.58±0.09 (280)	95±2.8 (426)	76±3.2 (28)
September- October	514±2.5 (2152)	1.46±0.06 (1150)	86±1.1 (1701)	65±2.0 (115)
р	0.002	0.26	0.000	0.008

Mean \pm SE. Number of measurements is given in brackets. p - probability of Null hyphothesis for two averages given above, the bold marks significant diffrence of means for 95% probability level.

Seasonal dynamics of Noctiluca in the Black and northern Adriatic Seas

Long-term changes of Noctiluca populations

Correlation coefficients (r) between *Noctiluca* abundance (m⁻³) and abiotic/biotic parameters

Parameter Mean for peak period	Black Sea		Northern Adriatic
	Monitored site	Open waters	Monitored site
Sea surface temperature, °C	0.09 <i>p</i> =0.72, <i>n</i> =11	0.52 <i>p=0.18, n=9</i>	0.27 <i>p</i> =0.51, <i>n</i> =8
Phytoplankton biomass (mean for the upper 15 m layer), µg l ⁻¹	-0.18 p=0.62, n=8	-0.57 p=0.89, n=9	nd
Chlorophyll, µg l ⁻¹	0.45 p=0.22, n=9	-0.18 p=0.96, n=8	0.63 p=0.065, n=9

Peak periods: Black Sea, 1 May – 15 June

Adriatic, 1 May – 1 June

n – number of observations (years)

nd – no data

Correlation coefficients (r) between *Noctiluca* abundance (m⁻³) and zooplankton

Parameter Mean for peak period	Black Sea		Northern Adriatic
	Monitored site	Open waters	Monitored site
Eggs of Calanus	np	0.76	np
<i>euxinu</i> s, m ⁻³		p=0.006, n=11	
<i>Calanus euxinus</i> , m ⁻³	np	0.01	np
		p=0.99, n=11	

Peak periods: Black Sea, 1 May – 15 June

Adriatic, 1 May – 1 June

n – number of observations (years)

nd – no data

Abundance of *Noctiluca* versus *Calanus euxinus* eggs in the open waters of the Black

Eggs, m⁻³

Vertical distribution of cells (m⁻³) of *Noctiluca* and eggs of *Calanus euxinus* in the Black Sea

May-June 6 profiles average August-September 19 profiles average

Correlation coefficients (r) between *Noctiluca* abundance (m⁻³) and wind intensity

Parameter Mean for peak period	Black Sea		Northern Adriatic
	Monitored site	Open waters	Monitored site
Wind velocity, m s ⁻¹	-0.54 p=0.09, n=11	-0.9 p=0.001, n=11	-0.57 p=0.1, n=9
Square wind velocity, m ² s ⁻²	-0.72 <i>p</i> =0.01, <i>n</i> =11	-0.94 p=0.001, n=11	-0.55 p=0.1, n=9
Windy hours, per month	-0.63 p=0.043, n=11	-0.92 p=0.001, n=11	-0.67 p=0.04, n=9

Peak periods: Black Sea, 1 May – 15 June

Adriatic, 1 May – 1 June

n – number of observations (years)

nd – no data

Abundance (m⁻³) of *Noctiluca* versus number of windy hours

Turbulence prevents:

- Attaching of food particles
- Creation of mucus threads
- Formation of the food roll
- Transportation of the food roll to the cytostome

Correlation coefficients (r) between *Noctiluca* abundance (m-3) and it abundance in previous months

Parameter Mean for peak period	Black Sea		Northern Adriatic
	Monitored site	Open waters	Monitored site
<i>Noctiluca</i> abundance in April, m ⁻³	0.75 <i>p</i> =0.02, <i>n</i> =10	nd	0.45 p=0.22, n=9
<i>Noctiluca</i> abundance in March, m ⁻³	0.58 <i>p=0.1, n=10</i>	nd	0.72 <i>p</i> =0.03, <i>n</i> =9

Peak periods: Black Sea, 1 May – 15 June

Adriatic, 1 May – 1 June

n – number of observations (years)

nd – no data

Abundance (m⁻³) of *Noctiluca* versus number of windy hours at the monitored sites in the Black Sea and in the northern Adriatic Sea

If the average cell numbers in April is a more than 100 cell m⁻³

Thank you!

Thank for attention